Abstract

In vacuum technology, capture pumps based on Non Evaporable Getters are commonly applied to ultra-high vacuum systems. Recent improvements in the absorption of hydrogenic species, with the introduction of Zr–V–Ti–Al alloys (ZAO®), make them an appealing and viable solution for the application in fusion research, and in particular for the vacuum system of neutral beam injectors (hydrogen pumping speed of thousands of m3/s, pressure of tens of mPa). This paper describes the characterization of the new NEG material in pumps of increasing dimensions, including the development, construction and test of a large mockup pump of modular design, to demonstrate the scalability of the technology. Effective pumping speeds of the order of 14 m3/s or higher at a concentration of 130 Pa m3/kg were achieved by the mockup pump, for an installed getter mass of about 16 kg, and a stability within 10% up to 1300 Pa m3/kg The measured effective pumping speed per unit area of sintered disks is of the order of 3.5 m/s, corresponding to 4.9 m/s at the disk surfaces as derived from numerical simulations. General guidelines for the design of large NEG pumps for hydrogen are discussed, including thermal aspects and duty cycle of the pump.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call