Exposure to asbestos and asbestos-like minerals has been related to the development of severe lung diseases, including cancer and malignant mesothelioma (MM). A high incidence of non-occupational MM was observed in New Caledonia (France) in people living in proximity of serpentinite outcrops, containing chrysotile and fibrous antigorite. Antigorite is a magnesium silicate, which shares with chrysotile asbestos the chemical formula. To achieve information on antigorite toxicity, we investigated the physico-minero-chemical features relevant for toxicity and cellular effects elicited on murine macrophages (MH-S) and alveolar epithelial cells (A549) of three fibrous antigorites (f-Atg) collected in a Caledonian nickel lateritic ore and subjected to supergene alteration. Field Atg were milled to obtain samples suitable for toxicological studies with a similar particle size distribution. UICC chrysotile (Ctl) and a non-fibrous antigorite (nf-Atg) were used as reference minerals.A high variability in toxicity was observed depending on shape, chemical alteration, and surface reactivity. The antigorites shared with Ctl a similar surface area (16.3, 12.1, 20.3, 13.4, and 15.6 m2/g for f-Atg1, 2, 3, nf-Atg, and Ctl). f-Atg showed different level of pedogenetic weathering (Ni depletion f-Atg1 ≪ f-Atg2 and 3) and contained about 50% of elongated mineral particles, some of which exhibited high aspect ratios (AR > 10 μm, 20%, 26%, 31% for f-Atg1, 2, and 3, respectively). The minerals differed in bio-accessible iron at pH 4.5 (f-Atg1 ≪ f-Atg3, < f-Atg2, nf-Atg < Ctl), and surface reactivity (ROS release in solution, f-Atg1 ≪ f-Atg2, 3, nf-Atg, and Ctl). f-Atg2 and f-Atg3 induced oxidative stress and pro-inflammatory responses, while the less altered, poorly reactive sample (f-Atg1) induced negligible effects, as well nf-Atg. The slow dissolution kinetics observed in simulated body fluids may signal a high biopersistence. Overall, our work revealed a significative cellular toxicity of f-Atg that correlates with fibrous habit and surface reactivity.