Abstract

The potential applications and industrial production of multi-wall carbon nanotubes (MWCNT) have raised serious concerns about their safety for human health and the environment. The present study was designed to examine the in vitro cytotoxicity and genotoxicity of MWCNT and UICC chrysotile A (chrysotile). Cytotoxicity using both colony formation and lactate dehydrogenase (LDH) assays and genotoxicity including chromosome aberration, micronucleus induction and hgprt mutagenicity were examined by exposing cultured Chinese hamster lung (CHL/IU) cells to MWCNT or chrysotile at different concentrations. The in vitro cytotoxicity of MWCNT depended on the solvent used for suspension of MWCNT and ultrasonication duration of the MWCNT suspension. A combination of DMSO/culture medium and 3-minute ultrasonication resulted in a well-dispersed medium with dispersion and isolation of agglomerated MWCNT by ultrasonication which manifested the highest cytotoxicity. The cytotoxicity was more potent for chrysotile than MWCNT. The genotoxicity of MWCNT was characterized by the formation of polyploidy without structural chromosome aberration, and an increased number of bi- and multi-nucleated cells without micronucleus induction, as well as negative hgprt mutagenicity. Chrysotile exhibited essentially the same genotoxicity as MWCNT, except for marginal but significant induction of micronuclei. MWCNT and chrysotile were incompletely internalized in the cells and localized in the cytoplasm. MWCNT and chrysotile were cytotoxic and genotoxic in Chinese hamster lung cells, but might interact indirectly with DNA. The results suggest that both test substances interfere physically with biological processes during cytokinesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.