This paper provides an overview of the three-year effort to design and implement a prototypical sense-and-avoid (SAA) system based on a multisensory architecture leveraging data fusion between optical and radar sensors. The work was carried out within the context of the Italian research project named TERSA (electrical and radar technologies for remotely piloted aircraft systems) undertaken by the University of Pisa in collaboration with its industrial partners, aimed at the design and development of a series of innovative technologies for remotely piloted aircraft systems of small scale (MTOW < 25 Kgf). The system leverages advanced computer vision algorithms and an extended Kalman filter to enhance obstacle detection and tracking capabilities. The “Sense” module processes environmental data through a radar and an electro-optical sensor, while the “Avoid” module utilizes efficient geometric algorithms for collision prediction and evasive maneuver computation. A novel hardware-in-the-loop (HIL) simulation environment was developed and used for validation, enabling the evaluation of closed-loop real-time interaction between the “Sense” and “Avoid” subsystems. Extensive numerical simulations and a flight test campaign demonstrate the system’s effectiveness in real-time detection and the avoidance of non-cooperative obstacles, ensuring compliance with UAV aero mechanical and safety constraints in terms of minimum separation requirements. The novelty of this research lies in (1) the design of an innovative and efficient visual processing pipeline tailored for SWaP-constrained mini-UAVs, (2) the formulation an EKF-based data fusion strategy integrating optical data with a custom-built Doppler radar, and (3) the development of a unique HIL simulation environment with realistic scenery generation for comprehensive system evaluation. The findings underscore the potential for deploying such advanced SAA systems in tactical UAV operations, significantly contributing to the safety of flight in non-segregated airspaces
Read full abstract