Glial tumors are the most common primary malignant central nervous system tumors. They are hard to treat, not only because of the deregulation in multiple pathways but also because they are not contained in a well-defined mass with clear borders. The use of a single therapeutic agent to target gliomas has yielded unsatisfactory results. A combination of molecules targeting multiple pathways may prove to be a better alternative. The effect of caffeic acid phenethyl ester and crocin on the proliferation and death of U87-MG cells over a concentration range was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. A colony formation assay was used to measure the effect of caffeic acid phenethyl ester and crocin on contact inhibition and anchorage independence ability of U87-MG cells. Furthermore, apoptosis in U87-MG cells was analyzed by propidium iodide assay. Real-time polymerase chain reaction and Western blotting were performed to determine the expression level of p53, epidermal growth factor receptor, and proliferating cell nuclear antigen. Caffeic acid phenethyl ester and crocin when used in combination present an anticancer potential for glioma. These molecules, in combination, inhibit proliferation and induce apoptosis in U87-MG glioma cells. Our results provide evidence that combination treatment realigns the expression paradigm of p53, epidermal growth factor receptor, and proliferating cell nuclear antigen in cotreated U87-MG cells. The combination of caffeic acid phenethyl ester and crocin led to inhibition in glioma cell proliferation and might prove to be an effective adjunct to the therapies in vogue.
Read full abstract