Oxidative stress and inflammation are the key players in the toxic manifestation of sporadic Parkinson's disease and zinc (Zn)-induced dopaminergic neurodegeneration. A synthetic superoxide dismutase (SOD) mimetic, tempol, and a naturally occurring antioxidant, silymarin protect against oxidative stress-mediated damage. The study intended to explore the effects of tempol and silymarin against Zn-induced dopaminergic neurodegeneration. Exposure to Zn produced neurobehavioral deficits and striatal dopamine depletion. Zn reduced glutathione content and glutathione-S-transferase activity and increased lipid peroxidation, superoxide dismutase activity, and level of pro-inflammatory mediators [nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6)]. Zn also attenuated the expression of tyrosine hydoxylase (TH), vesicular monoamine transporter 2 (VMAT-2), mitochondrial B-cell lymphoma-2 (Bcl-2), and procaspase-3 and 9 proteins and number of TH-positive neurons. Conversely, Zn elevated the expression of dopamine transporter (DAT) and mitochondrial Bcl-2-associated X (Bax) protein along with mitochondrial cytochrome c release. Administration of tempol significantly alleviated Zn-induced motor impairments, dopamine depletion, reduction in TH expression, and loss of TH-positive neurons similar to silymarin. Silymarin mitigated Zn-induced oxidative stress and inflammation and restored the expression of dopamine transporters and levels of pro-apoptotic proteins akin to tempol. The results demonstrate that both tempol and silymarin protect against Zn-induced dopaminergic neuronal loss through the suppression of oxidative stress and inflammation.