The increasing amount of plastic debris in water ecosystems provides a new substrate (epiplastic microhabitats) for aquatic organisms. The majority of research about epiplastic communities has focused on seawater environments, while research is still quite limited and scattered concerning freshwater systems. In this study, we analyze the first stages of colonization on different types of plastic by a periphytic algae community (its composition and dominant species complex) in freshwater bodies located in a nature reserve (within the Middle Volga Basin). A four-week-long incubation experiment on common plastic polymers (PET, LDPE, PP, and PS), both floating and dipped (~1 m), was conducted in two hydrologically connected karst water bodies in July 2023. The composition of periphytic algae was more diverse (due to the presence of planktonic, benthic, and periphytic species) than the phytoplankton composition found in the water column, being weakly similar to it (less than 30%). Significant taxonomic diversity and the dominant role of periphytic algae were noted for diatoms (up to 60% of the total composition), cyanobacteria (up to 35%), and green (including Charophyta) algae (up to 25%). The composition and structure of periphytic algae communities were distinct between habitats (biotope specificity) but not between the types of plastic, determined primarily by a local combination of factors. Statistically significant higher values of abundance and biomass were demonstrated for some species, particularly for Oedogonium on PP and Nitzschia on LDPE (p-value ≤ 0.05). As colonization progressed, the number of species, abundance, and dominance of individual taxa increased. In hydrologically connected habitats, different starts of colonization are possible, as well as different types of primary succession (initiated by potentially toxic planktonic cyanobacteria or benthic cyanobacteria and mobile raphid diatoms). Within the transparency zone, colonization was more active on the surface (for example, in relation to green algae on PP (p-value ≤ 0.05)). These results indicate a tendency for microalgae communities to colonize actively submerged plastic materials in freshwater, and they may be useful in assessing the ecological status of these aquatic ecosystems.
Read full abstract