An intense tropical cyclone, Typhoon Jebi (2018), landed the central part of Japan and caused severe damages. Quantitative assessment of strong winds in urban districts under typhoon conditions is important to understand the underlying risks. As a preliminary study, we investigate the influences of densely built urban environments on the occurrence of wind gusts in an urban district of Osaka City during Typhoon Jebi by merging mesoscale meteorological and building-resolving large-eddy simulations (LES). With the successful reproduction of the track and intensity of the typhoon in meteorological simulations, the simulated winds at the boundary-layer top of the LES model are used to quantitatively estimate the wind gusts in the urban district. The maximum wind gust in the analysis area of Osaka was estimated as 60-70 m s−1, which is comparable to the wind speed at the height of about 300 m.