Biochar, due to its favourable physiochemical properties, has been promoted as an ideal substrate additive on green roofs, with potential benefits to hydrological function. However, biochar is susceptible to water erosion, which may result in biochar loss and water pollution. The use of granulated biochars or biochars in large particle sizes could potentially alleviate biochar erosion loss, but effects on leachate quality have not been investigated. Also, biochar type and particle size influence plant performance, and effects on discharge quality may vary with vegetation. We assessed the effects of unprocessed and granulated biochars at five (0.25-0.5mm, 0.5-1mm, 1-2mm, 2-2.8mm, 2.8-4mm) and four (1-2mm, 2-2.8mm, 2.8-4mm, and 4-6.3mm) particle size ranges, respectively, on leachate quality on a typical green roof substrate, with presence and absence of vegetation (Agastache foeniculum - a drought-tolerant native forb). We evaluated integrated leachate quality using the CCME Water Quality Index (WQI). Unprocessed biochars reduced nutrient leaching due to increased water retention capacity (WRC) and total porosity. In contrast, granulated biochars, although showing less pronounced mitigation of nutrient leaching, reduced total suspended solids (TSS) and improved WQI in leachate due to enhanced plant performance. In addition, small biochar particles better reduced nutrient leaching and particle loss than large biochar particles, possibly due to increased WRC and formation of water-stable aggregates. The presence of vegetation generally reduced the leaching of nutrients and TSS, consistent with plant nutrient uptake and root substrate stabilization. However, plant biomass was correlated with increased total N leaching, likely due to litter inputs and rapid litter decomposition. We conclude that applications of granulated biochars may best improve discharge quality from green roofs through sorption effects and by enhancing plant performance.