Advanced air mobility (AAM) is a broad concept enabling consumers access to on-demand air mobility, cargo and package delivery, healthcare applications, and emergency services through an integrated and connected multimodal transportation network. While a number of technical and social concerns have been raised about AAM, early use cases for emergency response and aeromedical transport may be key to demonstrating the concept and building public acceptance. Using a five-step multi-method approach consisting of preliminary scoping, modeling performance metrics, developing baseline assumptions, analyzing scenarios, and applying a Monte Carlo sensitivity analysis, this study examines the potential operational and market viability of the air ambulance market using a variety of aircraft and propulsion types. The analysis concludes that electric vertical take-off and land (eVTOL) aircraft could confront a number of operational and economic challenges for aeromedical applications compared to hybrid vertical take-off and land (VTOL) aircraft and rotorcraft. The study finds that technological improvements such as reduced charge times, increased operational range, and battery swapping could make the eVTOL aircraft more reliable and cost-effective for aeromedical transport.