Persian oak (Quercus brantii var. persica) is a dominant tree species of Zagros forests in a semi-arid area, western Iran. However, the capacity of biomass and carbon stocks of these forests is not well studied. We selected three types of oak, i.e., seed-originated oak, coppice oak and mixed (seed-originated and coppice) oak of Zagros forests in Dalab valley, Ilam Province, Iran to survey the capacity of biomass and carbon stocks in 2018. Thirty plots with an area of 1000 m2 were systematically and randomly assigned to each type of oak. Quantitative characteristics of trees, such as diameter at breast height (DBH), height, crown diameter and the number of sprouts in each plot were measured. Then, aboveground biomass (AGB), belowground biomass (BGB), aboveground carbon stock (AGCS) and belowground carbon stock (BGCS) of each tree in plots were calculated using allometric equations. The litterfall biomass (LFB) and litterfall carbon stock (LFCS) were measured in a quadrat with 1 m×1 m in each plot. One-way analysis of variance and Duncan’s test were performed to detect the differences in biomass and carbon stocks among three types of oak. Results showed that AGB, BGB and BGCS were significantly different among three types of oak. The highest values of AGB, AGCS, BGB and BGCS in seed-originated oak were 76,043.25, 14,725.55, 36,737.79 and 7362.77 kg/hm2, respectively. Also, the highest values of LFB and LFCS in seed-originated oak were 3298.33 and 1520.48 kg/hm2, respectively, which were significantly higher than those of the other two types of oak. The results imply the significant role of seed-originated oak for the regeneration of Zagros forests. Further conservation strategy of seed-originated oak is an important step in the sustainable management of Zagros forests in Iran.