Polyadenylated ribonucleic acid (RNA) was isolated from chicken skeletal and smooth muscle and translated in a cell-free rabbit reticulocyte system. Both types of muscle tissue contain messenger RNAs that code for the intermediate filament proteins desmin and vimentin, and the relative concentrations of the two translation products reflect the prevalence of the two proteins in vivo. Desmin synthesis represents a greater proportion of the total protein synthesis from smooth muscle RNA than from skeletal muscle RNA, whereas the converse is true of vimentin synthesis. Fractionation of the RNA on formamide-containing sucrose gradients before translation indicates that the desmin messenger RNA is larger than the vimentin messenger RNA and contains an extensive noncoding segment. The desmin and vimentin messages code predominantly for the non-phosphorylated forms of desmin and vimentin. However, the ratio of phosphorylated to unphosphorylated forms of the proteins could be increased by adding cyclic adenosine monophosphate-dependent kinase activity to the translation mixtures. These results suggest that desmin and vimentin are each synthesized from a single messenger RNA species and that posttranslational phosphorylation generates the additional isoelectric variants of each which are observed in vivo.