We tested the hypothesis that the number of seedlings from the soil seed bank (SSB) in forests polluted by heavy metals and disturbed by recent fires decreases. It was also assumed that the consequences of pollution and fires for the soil seed bank are additive. We estimated the number of seedlings from the SSB of pine forests located near the Karabash copper smelter (KCS) (contaminated by Cu, Zn, Pb, and Cd) and from uncontaminated forests of the Ilmen State Reserve (ISR). In both areas, samples of the forest litter and humus horizon were taken from forests recently exposed to ground fires and long-term unburned forests. Samples were exhibited from June to September, conducting seven rounds of counting seedlings. Small peculiarities of the emergence of seedlings on the samples of the forest litter and the humus horizon were established. However, the regularities of the reaction of SSB to pollution and fire disturbances did not depend on the soil horizon. The number of seedlings on substrates from contaminated forests was 5–8 times lower than the number of seedlings on substrates from background forests. A decrease in the number of seedlings on polluted substrates was accompanied by an increase in the share of dicots in the total number of seedlings. The relationship between the number of seedlings and the age of fires was not found. The additivity of the consequences of pollution and fires has also not been established. Of the two types of damage, pollution and fires, the pollution factor is of leading importance for SSBs. The results indicate a low recovery capacity of the herb-shrub layer of polluted forests.