Medical polyurethanes have emerged as a leading choice for biomedical applications owing to their exceptional biocompatibility and good physical and mechanical properties. Catalysts play a crucial role as additives in the synthesis of medical polyurethanes, enhancing synthesis efficiency and material properties. However, the catalysts used may affect the biocompatibility of polyurethanes and pose potential harm to human health. This review encapsulates the latest findings regarding the catalysts employed in the synthesis of medical polyurethane materials and their biotoxicity. Initially, we reviewed the prevalent types of catalysts used in the synthesis of medical polyurethane materials and described their distinctive characteristics. Subsequently, our focus shifted to exploring the potential biotoxicity associated with these catalysts. Finally, we provided a forward-looking perspective and recommendations for the future trajectory of catalyst selection in the synthesis of medical polyurethane materials. By acquiring a more profound understanding of the properties and biotoxicity of catalysts used in the synthesis of medical polyurethane materials, and by uncovering existing issues and challenges, we can better guide the design of medical polyurethane materials. This, in turn, enables us to chart the course for future development and ultimately enhance the biocompatibility and safety profiles of medical polyurethane materials. Such advancements will promote the continued development and application of medical polyurethane materials in clinical settings.
Read full abstract