Cytochrome o type oxidase purified from the membrane of Escherichia coli consists of four polypeptides (Mr 66000, 35000, 22000, and 17000), and the monomeric form predominates in octyl beta-D-glucopyranoside. The oxidase complex contains two b-type cytochromes (b-558 and b-563) and 2 mol of heme/mol of enzyme. Cytochrome o utilizes ubiquinol-1 and a number of other artificial electron donors as substrates but does not oxidize reduced cytochrome c or ferrocyanide. Activity is highly dependent upon exogenous phospholipids and/or Tween 20, and the quinone analogues 2-heptyl-4-hydroxyquinoline N-oxide and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole are potent inhibitors. Proteoliposomes were formed by detergent dilution or dialysis in the presence of the oxidase and phospholipids, followed by freeze-thaw/sonication. Vesicles formed by this means are unilamellar and contain a random distribution of 85-90-A intramembranous particles on the convex and concave fracture surfaces. During oxidase turnover, the reconstituted system generates a proton electrochemical gradient (interior negative and alkaline) of -115 to -140 mV; however, respiratory control is minimal (i.e., respiratory control ratios of about 1.5 are observed). By using a glass electrode to measure changes in external pH and the fluorescence of entrapped 8-hydroxy-1,3,6-pyrenetrisulfonate to measure changes in internal pH, it is apparent that during ubiquinol oxidation, protons are released on the external surface of the membrane and consumed on the internal surface. In contrast, with N,N,N',-N'-tetramethyl-p-phenylenediamine, an electron donor that carries few protons at neutral pH, little change in external pH is observed until the protonophore carbonyl cyanide m-chlorophenylhydrazone is added, at which point the medium becomes alkaline. The results taken as a whole are consistent with the concept that oxidase turnover generates an electrical potential (interior negative) due to vectorial electron flow from the outer to the inner surface of the membrane. The pH gradient (interior alkaline), on the other hand, appears to result from scalar (i.e., nonvectorial) reactions that consume and release protons at the inner and/or outer surfaces of the membrane, respectively. In other words, cytochrome o oxidase from Escherichia coli does not appear to catalyze vectorial proton translocation.
Read full abstract