Grazing-incidence X-ray diffraction (GIXD) is the technique of choice for obtaining crystallographic information from thin films. An essential step in the evaluation of GIXD data is the extraction of peak intensities, as they are directly linked to the positions of individual atoms within the crystal unit cell. In order to obtain reliable intensities independent of the experimental setup, a variety of correction factors need to be applied to measured GIXD raw data. These include the polarization of the incident beam, solid-angle variations, absorption effects, the transmission coefficient and the Lorentz correction. The aim of this work is to provide a systematic compilation of these intensity corrections required for state-of-the-art GIXD setups with static area detectors. In a first step, analytical formulae are derived on the basis of theoretical considerations. The obtained intensity corrections are then applied to measured GIXD raw data from samples with different textures, including a single crystal and thin films containing either randomly distributed or oriented crystallites. By taking advantage of the symmetries inherent in the different types of textures, integrated peak intensities are determined, and these are compared with intensities calculated from single-crystal diffraction data from the literature. Accurate intensity corrections promise an improved quality of crystal structure solution from thin films and contribute to achieving accurate phase and texture quantifications from GIXD measurements.
Read full abstract