An intrinsically microporous polymer with hydroxyl functionalities, PIM-6FDA-OH, was used as a precursor for various types of carbon molecular sieve (CMS) membranes for ethylene/ethane separation. The pristine polyimide films were heated under controlled N2 atmosphere at different stages from 500 to 800°C. All CMS samples carbonized above 600°C surpassed the polymeric ethylene/ethane upper bound. Pure-gas selectivity reached 17.5 for the CMS carbonized at 800°C with an ethylene permeability of about 10Barrer at 2bar and 35°C, becoming the most selective CMS for ethylene/ethane separation reported to date. As expected, gravimetric sorption experiments showed that all CMS membranes had ethylene/ethane solubility selectivities close to one. The permselectivity increased with increasing pyrolysis temperature due to densification of the micropores in the CMS membranes, leading to enhanced diffusivity selectivity. Mixed-gas tests with a binary 50:50 v/v ethylene/ethane feed showed a decrease in selectivity from 14 to 8.3 as the total feed pressure was increased from 4 to 20bar. The selectivity drop under mixed-gas conditions was attributed to non-ideal effects: (i) competitive sorption that reduced the permeability of ethylene and (ii) dilation of the CMS that resulted in an increase in the ethane permeability.