Abstract Tests have been made on unloaded ebonites prepared from ordinary commercial types of natural rubber, special (deproteinized) rubbers having reduced contents of protein and(or) other water-absorbent substances, and a whole-latex rubber containing relatively large percentages of these substances, to determine to what extent these substances influence the electrical properties of the ebonite and, hence, whether any technically useful improvement can be effected by using specially prepared rubbers. Permittivity and power factor at 106 cycles per second, but particularly power factor, are somewhat improved by using the special rubbers, so that the dielectric loss can be reduced by about 30 per cent. In addition, the increase in dielectric loss caused by exposure to high humidity or by a rise of temperature is in general lessened by the use of these rubbers. Similar, though smaller, improvements in the properties of the ebonite are obtained by washing ordinary commercial rubber (smoked sheet). Although a definite improvement in dielectric loss is obtained, it does not seem probable that purification of natural rubber would lead to ebonites with dielectric properties approaching those of polystyrene, for instance. It seems unlikely that even complete elimination of the water-absorbent impurities would reduce the dielectric loss by more than 50 per cent; the rubber-sulfur compound itself thus appears to be responsible for a fair proportion of the loss normally observed. The large percentages of water-soluble substances present in whole-latex rubber increase the permittivity and especially the power factor of the ebonite made from it. The dielectric properties of ebonite are related, though not closely, to its water-absorbing capacity and that of the raw rubber used, low absorption being in general accompanied by low dielectric loss and reduced sensitiveness to humidity variations. There is only a rough parallelism between the water absorptions of raw rubbers and the corresponding ebonites. Probable reasons for this are indicated. It is concluded that water absorption tests on raw rubber form a useful, though only approximate, guide to its value for making electrical ebonite; electrical tests on the ebonite must be the final criterion. Apart from very impure whole-latex rubber, no correlation can be traced between the inorganic content (ash) of ebonite and its electrical properties. The probable reason for this is indicated. There is evidence that the dielectric loss of ebonite may increase with the passage of time. In view of its obvious theoretical and practical importance, this phenomenon requires further study. No technically useful advantage as regards breakdown strength, volume resistivity, surface resistivity, or stability to light, by the use of the special rubbers, is evident in the present work. The plastic yield characteristics of ebonite are not appreciably altered by using special rubbers. Estimations of uncombined sulfur and also plastic yield tests show that one of the deproteinized rubbers vulcanizes more rapidly than the rest, which differ little among themselves.
Read full abstract