Volatile organic compound (VOC) gases are highly hazardous to human health, and their presence in the human breath plays an indispensable role for the early diagnosis of various diseases (cancer, renal failure, etc.). In recent times, perovskite materials have shown notable performance in the detection of VOC gases with high accuracy, fast response, recovery time, selectivity, and sensitivity, owing to their unique crystallographic structures and excellent optoelectronic properties. In this Review, we look at recent reports on perovskite-based sensors and their sensing performance toward VOC gases. Here, we focus on the sensing mechanisms of two types of perovskite materials, metal halide and metal oxide perovskites, and explain the differences in their crystal structures. We also discuss the common preparation methods used by researchers for the synthesis of these perovskite materials. Further, we elucidate various important factors influencing the sensing performance of perovskite-based sensors, such as doping, defects, morphology, temperature, humidity, and light. We conclude with the future prospects and challenges related to these perovskite-based sensors toward the detection of VOC gases.