Arctic sea ice has a significant effect on global climate change, ship navigation, Arctic ecosystems, and human activities. Therefore, it is essential to produce high-resolution sea ice maps that accurately represent the geographical distribution of various sea ice types. Based on deep learning technology, many automatic sea ice classification algorithms have been developed using synthetic aperture radar (SAR) imagery over the last decade. However, sea ice classification faces two vital challenges: (1) it is difficult to distinguish sea ice types with close developmental stages solely from SAR images and (2) an imbalanced sea ice dataset has a significantly negative effect on ice classification model performance. In this article, a spatio-temporal deep learning model—the Dynamic Multi-Layer Perceptron (MLP)—is utilized to classify 10 sea ice types automatically. It consists of a SAR image branch and a spatio-temporal branch, which extracts SAR image features and spatio-temporal distribution characteristics of sea ice, respectively. By projecting similar image features to different positions in the spatio-temporal feature space dynamically, the Dynamic MLP model effectively distinguishes between similar sea ice types. Furthermore, to reduce the impact of data imbalance on model performance, the dynamic curriculum learning (DCL) method is used to train the Dynamic MLP model. Experimental results demonstrate that our proposed method outperforms the long short-term memory (LSTM) network approach in distinguishing between sea ice types with similar developmental stages. Moreover, the DCL training method can also effectively improve model performance in identifying minority ice types.
Read full abstract