In spite of the many chemical reports on polyacetylenes of the genus Artemisia, combined conclusions regarding their distribution and biological functions are widely missing. The aim of the present review was to arrange the diversity of polyacetylenes in the genus following biogenetic aspects and group them together into characteristic structural types. The co-occurrence of the dehydrofalcarinol type with the aromatic capillen-isocoumarin type represents a characteristic biogenetic trend, clearly segregating species of the subgenus Dracunculus from those of the subgenera Artemisia and Absinthium, distinguished by the spiroketal enol ether and/or linear triyne type. Various accumulation trends toward specific structures additionally contribute to a more natural species grouping within the subgenera. Biological activities were reported for all four structural types, ranging from antifungal, insecticidal, nematicidal, and cytotoxic properties to allelopathic effects. Of particular interest were their remarkable cytotoxic potencies, from which the very high values of dehydrofalcarin-3,8-diol may be associated with the pronounced affinity of this type to form extremely stable bonds to proteins acting in signaling pathways. The aromatic acetylene capillin inhibited the viability of various tumor cells in a dose- and time-dependent manner. Its potent apoptosis-inducing activity was induced via the mitochondrial pathway. A group of spiroketal enol ethers was identified as inhibitors of PMA-induced superoxide generation. Among them, the epoxide of the isovalerate ester exhibited the highest potency. The ecological impact of acetylene formation was made apparent by the allelopathic effects of DME of the linear triyne type, and the aromatic capillen by inhibiting seed germination and growth of widespread weeds.
Read full abstract