Although crystalline materials are often conceptualized as involving a static lattice configuration of particles, it has recently become appreciated that string-like collective particle exchange motion is a ubiquitous and physically important phenomenon in both the melting and interfacial dynamics of crystals. This type of collective motion has been evidenced in melting since early simulations of hard disc melting by Alder et al. [Phys. Rev. Lett. 11(6), 241-243 (1963)], but a general understanding of its origin, along with its impact on melting and the dynamics of crystalline materials, has been rather slow to develop. We explore this phenomenon further by focusing on the interfacial dynamics of a model crystalline Cu material using molecular dynamics simulations where we emphasize the geometrical nature and spatial extent of the atomic trajectories over the timescale that they are caged, and we also quantify string-like collective motion on the timescale of the fast β-relaxation time, τf, i.e., "stringlets." Direct visualization of the atomic trajectories in their cages over the timescale over which the cage persists indicates that they become progressively more anisotropic upon approaching the melting temperature Tm. The stringlets, dominating the large amplitude atomic motion in the fast dynamics regime, are largely localized to the crystal interfacial region and correspond to "excess" modes in the density of states that give rise to a "boson peak." Moreover, interstitial point defects occur in direct association with the stringlets, demonstrating a link between classical defect models of melting and more recent studies of melting emphasizing the role of this kind of collective motion.
Read full abstract