Abstract

An exactly separable version of the Bohr Hamiltonian which combines the γ-stable and γ-rigid axial vibration-rotation is used to describe the collective properties of few neutron-rich transitional nuclei. The coupling between the two types of collective motion is managed through a rigidity parameter which also influences the geometry of the shape phase space. While the γ-angular part of the problem associated to axially symmetric shapes is treated within the small angles approximation and the stiff γ oscillation hypothesis, the β vibration is described by means of a Davidson potential. The resulting model have three free parameters not counting the scale and was successfully applied for the description of the collective spectra for few heavier isotopes of Gd and Dy. In both cases a critical nucleus was identified through a discontinuous behavior in respect to the rigidity parameter and relevant experimental observables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.