Matrix metalloproteinase 9 (MMP-9) degrades basement membrane type IV collagen and is expressed during cellular migration and invasion. Here we show that v-Ha-Ras overexpression in rat kidney epithelial cells (REC) caused upregulation of MMP-9 gene expression in part by increasing cellular oxidant levels. v-Ha-Ras mediated the production of superoxide in Ras-transfected cells, which was associated with upregulated MMP-9 gene expression. Conversely, v-Ha-Ras expression decreased steady-state levels of mRNAs from tissue inhibitor of metalloproteinase 1 (TIMP-1), an inhibitor of MMP-9; plasminogen activator inhibitor 1 (PAI-1), which indirectly activates MMP-9 by increasing plasmin levels; and collagen IV, a substrate of MMP-9 and a major component of basement membrane. Gel mobility shift assays demonstrated that Ras overexpression enhanced NF-κB, but not AP-1 DNA binding to motifs in the MMP-9 gene promoter. The Ras-induced increase in NF-κB DNA binding could be inhibited by treatment with the antioxidants N-acetyl-L-cysteine and glutathione monoester, suggesting that intracellular oxidant levels can mediate MMP-9 transcription. Our findings identify an important role for Ras in the regulation of MMP-9 expression, and suggest that increased superoxide production can upregulate MMP-9 expression and thus contribute to malignant conversion.
Read full abstract