Stroke is one of the top causes of death and disability worldwide, and its pathogenesis and mechanism have not been fully elucidated. Several agents have shown protective effects against stroke in animal models; however, few studies have shown obvious effects in clinical practice. This might be due to differences in brain structure and physiological function between humans and rodents. In this study, we established a hypoxic stroke model in human-induced pluripotent stem cell (hiPSC)-derived brain organoids to simulate the hypoxic stroke caused by ischemia. Then, by combining proteomics, single-cell transcriptome analysis, and histopathological analysis, a significant increase of three types of astrocytes was identified and they showed different responses to hypoxic environments; also the main type of astrocyte that cause brain tissue hyperplasia in ischemia brains was identified. In addition, the cortical excitatory neurons had signs of apoptosis and aging after hypoxia both in vivo and in vitro. Most importantly, we identified a possible role of a traditional Chinese medicine formula called DengZhanShengMai capsule in ischemic and hypoxic stroke treatment through regulation of lipid metabolism related biological functions. These results indicate that the combination of brain organoids and multiomics method is helpful for developing a new strategy to direct study stroke, and could provide a promising platform for drug screening of stroke in the future.
Read full abstract