In this paper, we investigate the ability of higher order fuzzy systems to handle increased uncertainty, mostly induced by the market microstructure noise inherent in a high frequency trading (HFT) scenario. Whilst many former studies comparing type-1 and type-2 Fuzzy Logic Systems (FLSs) focus on error reduction or market direction accuracy, our interest is predominantly risk-adjusted performance and more in line with both trading practitioners and upcoming regulatory regimes. We propose an innovative approach to design an interval type-2 model which is based on a generalisation of the popular type-1 ANFIS model. The significance of this work stems from the contributions as a result of introducing type-2 fuzzy sets in intelligent trading algorithms, with the objective to improve the risk-adjusted performance with minimal increase in the design and computational complexity. Overall, the proposed ANFIS/T2 model scores significant performance improvements when compared to both standard ANFIS and Buy-and-Hold methods. As a further step, we identify a relationship between the increased trading performance benefits of the proposed type-2 model and higher levels of microstructure noise. The results resolve a desirable need for practitioners, researchers and regulators in the design of expert and intelligent systems for better management of risk in the field of HFT.