Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that affects the processing of carbohydrates, proteins, and lipids. In T2DM, metabolic dysregulation occurs through various pathways caused by increased levels of many adipokines and inflammatory chemokines. Impaired insulin-glucose metabolism occurs in tissues. The proteolytic enzyme matriptase is thought to be closely related to glucose metabolism due to its glycolization sites. Our study aimed to evaluate the correlation between matriptase, a proteolytic enzyme, and metabolic parameters in individuals recently diagnosed with T2DM. We also sought to investigate the potential involvement of matriptase in the development of diabetes. We measured all participants' metabolic laboratory parameters, including basic biochemical tests, hemograms, high-sensitivity C-reactive protein (hsCRP), and matriptase levels. Our results showed a significant increase in circulating matriptase levels in individuals with T2DM compared to the control group. Furthermore, individuals with metabolic syndrome had significantly higher matriptase levels than those without in the T2DM and control groups. We also observed that T2DM patients had elevated levels of Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), hsCRP, and matriptase, which displayed a positive correlation. Our study is the first to report elevated levels of matriptase in individuals with newly diagnosed T2DM and/or metabolic syndrome. Additionally, we found a significant positive correlation between matriptase levels and metabolic and inflammatory parameters, indicating a potential role for matriptase in the pathogenesis of T2DM and glucose metabolism. Further research on matriptase could lead to its recognition as a novel target for investigation.