A computational procedure is described for the calculation of isothermal flow fields of two-ring flame stabilizers in practical afterburners and also for the reacting flow parameters in a research afterburner. The predictions have been obtained using a finite volume solution procedure for the steady three-dimensional elliptic equations of fluid flow. The physical models include the κ-e turbulence model, eddy breakup model, two-step reaction model, droplet vaporization and combustion model, and six-flux radiation model. The presence of radial gutters and staggering the distance between two-ring gutters alter the afterburner flow patterns considerably, including the elimination of diffuser stall and flow separation losses near the diffuser. The predicted and measured emissions in the research afterburner geometry agree qualitatively. The effect of the fuel to air ratio and location of the fuel injector on the temperature and species concentration distribution are presented in detail.