With the proposed “double carbon” target for the power system, large-scale distributed energy access poses a major challenge to the way the distribution grid operates. The rural distribution network (DN) will transform into a new local power system primarily driven by distributed renewable energy sources and energy storage, while also being interconnected with the larger power grid. The development of the rural DN will heavily rely on the construction and efficient planning of the microgrid (MG) within the agricultural park. Based on this, this paper proposes a two-stage optimal scheduling model and solution strategy for the microgrid distribution network with multi-source agricultural load aggregation. First, in the first stage, considering the flexible agricultural load and the market time-of-use electricity price, the economic optimization is realized by optimizing the operation of the schedulable resources of the park. The linear model in this stage is solved by the Lingo algorithm with fast solution speed and high accuracy. In the second stage, the power interaction between the MG and the DN in the agricultural park is considered. By optimising the output of the reactive power compensation device, the operating state of the DN is optimised. At this stage, the non-linear and convex optimization problems are solved by the particle swarm optimization algorithm. Finally, the example analysis shows that the proposed method can effectively improve the feasible region of safe operation of the distribution network in rural areas and improve the operating income of a multi-source agricultural load aggregation agricultural park.
Read full abstract