To enable the regulation and utilization of electric vehicle (EV) load resources by the power grid in the electricity market environment, a third-party electric vehicle aggregator (EVA) must be introduced. The strategy of EVA participation in the electricity market must be studied. During operation, the EVA faces a double uncertainty in the market, namely, electricity demand and electricity price, and must optimize its market behavior to protect its own interests. To achieve this goal, we propose a robust pricing strategy for the EVA that takes into account the coordination of two-stage market behavior to enhance operational efficiency and risk resistance. A two-stage robust pricing strategy that takes into account uncertainty was established by first considering day-ahead pricing, day-ahead electricity purchases, real-time electricity management, and EV customer demand response for the EVA, and further considering the uncertainty in electricity demand and electricity prices. The two-stage robust pricing model was transformed into a two-stage mixed integer programming by linearization method and solved iteratively by the columns and constraints generation (CCG) algorithm. Simulation verification was carried out, and the results show that the proposed strategy fully considers the influence of price uncertainty factors, effectively avoids market risks, and improves the adaptability and economy of the EVA’s business strategy.
Read full abstract