Abstract
During the COVID-19 pandemic, many countries faced challenges in developing and maintaining a reliable national pandemic vaccination calendar due to vaccine supply uncertainty. Deviating from the initial calendar due to vaccine delivery delays eroded public trust in health authorities and the government, hindering vaccination efforts. Motivated by these challenges, we address the problem of developing a long-term national pandemic vaccination calendar under supply uncertainty. We propose a novel two-stage mixed integer programming model that considers critical factors such as multiple doses, varying dosing schemes, and uncertainties in vaccine delivery timing and quantity. We present an efficient aggregation-based algorithm to solve this complex problem. Additionally, we extend our model to allow for dynamic adjustments to the vaccine schedule in response to mandatory policy changes, such as modifications to dose intervals, during ongoing vaccinations. We validate our model based on a case study developed by using real COVID-19 vaccination data from Norway. Our results demonstrate the advantages of the proposed stochastic optimization approach and heuristic algorithm. We also present valuable managerial insights through extensive numerical analysis, which can aid public health authorities in preparing for future pandemics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.