Lattice QCD offers the possibility of computing parton distributions from first principles, although not in the usual MS¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{MS} $$\\end{document} factorization scheme. Calculations are therefore matched to MS¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{MS} $$\\end{document} using a perturbative procedure which is the source of significant uncertainty within the currently accessible kinematics. We present the possibility of computing the z2 evolution of non-singlet pseudo-parton distribution functions within the short factorization scheme in a numerically improvable way. The goal is to have tools to evolve a calculation to a scale where perturbative uncertainties are less pronounced. We compare a numerical extraction of the evolution operator from lattice data to the computation of z2 dependence in perturbation theory. Finally, we discuss how this numerical work may be extended to address the two-scale problem that arises when the Ioffe time range must be made large to extend the reach of the calculation of the pseudo-PDF to smaller values of the momentum fraction.
Read full abstract