Abstract
We study the weak solvability of a macroscopic, quasilinear reaction–diffusion system posed in a 2D porous medium which undergoes microstructural problems. The solid matrix of this porous medium is assumed to be made out of circles of not-necessarily uniform radius. The growth or shrinkage of these circles, which are governed by an ODE, has direct feedback to the macroscopic diffusivity via an additional elliptic cell problem.The reaction–diffusion system describes the macroscopic diffusion, aggregation, and deposition of populations of colloidal particles of various sizes inside a porous media made of prescribed arrangement of balls. The mathematical analysis of this two-scale problem relies on a suitable application of Schauder’s fixed point theorem which also provides a convergent algorithm for an iteration method to compute finite difference approximations of smooth solutions to our multiscale model. Numerical simulations illustrate the behavior of the local concentration of the colloidal populations close to clogging situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.