Since the collocation method approximates ordinary differential equations, partial differential equations, and integral equations in physical space, it is very easy to implement and adapt to various problems, including variable coefficient and nonlinear differential equations. In this paper, we derive a Jacobi-Gauss-Lobatto collocation method (J-GL-C) to solve numerically nonlinear time-delayed Burgers-type equations. The proposed technique is implemented in two successive steps. In the first one, we apply <svg style="vertical-align:-2.3205pt;width:52.4375px;" id="M1" height="15.0875" version="1.1" viewBox="0 0 52.4375 15.0875" width="52.4375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,5.944,12.138)"><path id="x1D441" d="M857 650l-6 -28q-44 -4 -61.5 -16.5t-29.5 -48.5q-11 -32 -37 -166l-78 -399h-29l-351 537h-4l-56 -276q-24 -120 -24 -164q0 -35 17.5 -46t75.5 -15l-6 -28h-245l7 28q41 2 62 14t31 44q10 30 41 171l53 245q8 44 6.5 60.5t-14.5 33.5q-10 15 -27 19.5t-64 6.5l6 28h153
l350 -516h5l48 257q25 131 25 171q0 34 -17.5 45t-77.5 15l7 28h240z" /></g><g transform="matrix(.017,-0,0,-.017,24.575,12.138)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,38.327,12.138)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,46.486,12.138)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> nodes of the Jacobi-Gauss-Lobatto quadrature which depend upon the two general parameters <svg style="vertical-align:-2.3205pt;width:73.425003px;" id="M2" height="15.1125" version="1.1" viewBox="0 0 73.425003 15.1125" width="73.425003" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.162)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,5.944,12.162)"><path id="x1D703" d="M475 507q0 -83 -20 -172t-56 -167.5t-93.5 -129t-125.5 -50.5q-157 0 -157 227q0 78 21.5 164t59 161t96.5 123.5t126 48.5q79 0 114 -58t35 -147zM391 522q0 155 -81 155q-62 0 -111 -82.5t-73 -200.5h253q12 81 12 128zM373 346h-255q-12 -91 -12 -150q0 -72 20 -123
t63 -51q34 0 64 28.5t52.5 77t39 103t28.5 115.5z" /></g><g transform="matrix(.017,-0,0,-.017,14.409,12.162)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,21.107,12.162)"><path id="x1D717" d="M501 444q0 -256 -148 -397q-62 -59 -134 -59q-54 0 -88 36.5t-29 124.5q3 51 -6.5 70.5t-29.5 19.5q-14 0 -37 -7l-6 25q42 42 91 42q27 0 42 -21.5t18.5 -48t3.5 -68.5q0 -120 80 -120q127 0 162 337q-23 -17 -60 -32t-67 -15q-87 0 -136 49.5t-49 121.5q0 86 63.5 148
t149.5 62q75 0 127.5 -65t52.5 -203zM423 443q0 106 -42 167t-95 61t-79.5 -38t-26.5 -96q0 -69 43.5 -110.5t111.5 -41.5q52 0 86 27q2 20 2 31z" /></g><g transform="matrix(.017,-0,0,-.017,34.638,12.162)"><path id="x3E" d="M512 230l-437 -233v58l378 199v2l-378 200v58l437 -233v-51z" /></g><g transform="matrix(.017,-0,0,-.017,49.342,12.162)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,59.32,12.162)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,67.48,12.162)"><use xlink:href="#x29"/></g> </svg>, and the resulting equations together with the two-point boundary conditions constitute a system of <svg style="vertical-align:-2.3205pt;width:52.4375px;" id="M3" height="15.0875" version="1.1" viewBox="0 0 52.4375 15.0875" width="52.4375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,5.944,12.138)"><use xlink:href="#x1D441"/></g><g transform="matrix(.017,-0,0,-.017,24.575,12.138)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,38.327,12.138)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,46.486,12.138)"><use xlink:href="#x29"/></g> </svg> ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve a system of <svg style="vertical-align:-2.3205pt;width:52.4375px;" id="M4" height="15.0875" version="1.1" viewBox="0 0 52.4375 15.0875" width="52.4375" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,5.944,12.138)"><use xlink:href="#x1D441"/></g><g transform="matrix(.017,-0,0,-.017,24.575,12.138)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,38.327,12.138)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,46.486,12.138)"><use xlink:href="#x29"/></g> </svg> ODEs of second order in time. We present numerical results which illustrate the accuracy and flexibility of these algorithms.
Read full abstract