In the present work Digital Material Representation (DMR) approach was utilized to simulate the deformation behavior of the two phase Ti-6Al-4V alloy. DMR models of the two phase structure, containing different morphologies of alpha grains within a beta matrix – lamellar and equiaxed, were created. Each phase was then separated and different mechanical properties were assigned. Subsequently, their response to loading was tested using simple shear numerical simulations with special focus on strain inhomogeneities, as the main driving force for spheroidization is considered to be the formation of intense shearing within alpha lamellae. The proposed modeling approach combining Finite Element Method (FEM) with DMR allowed for much more detailed numerical analysis of deformation behavior of two phase titanium alloys at the micro scale and provided information such as strain localization and stress distributions within the alpha and beta phases. It was showed that presented model offers a new and powerful tool to study the physical bases of microstructure evolution processes such as spheroidization or recrystallization of Ti alloys. It shows good potential in simulation of deformation processes of complex two-phase morphologies that is a crucial step towards optimization of process parameters during hot forming of Ti-6Al-4V alloys.
Read full abstract