In a two-phase anaerobic digestion process, enhanced biogas production and organic pollutant removal depend on the stability and performance of the hydrolytic–acidogenic and methanogenic phases. Additionally, the hydrolytic–acidogenic phase is a rate-limiting step, which calls for the further optimization of operating parameters. The objective of this study was to optimize the operating parameters of the hydrolytic–acidogenic reactor (HR) in the two-phase anaerobic digestion treating slaughterhouse wastewater. The experiment was carried using bench-scale sequential bioreactors. The hydrolytic–acidogenic reactor operating parameters were optimized for six different hydraulic retention times (HRTs) (6–1 day) and organic loading rates (OLRs) (894.41 ± 32.56–5366.43 ± 83.80 mg COD/L*day). The degree of hydrolysis and acidification were mainly influenced by lower HRT (higher OLR), and the highest values of hydrolysis and acidification were 63.92% and 53.26% at an HRT of 3 days, respectively. The findings indicated that, at steady state, the concentrations of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs) decrease as HRT decreases and OLR increases from HRTs of 3 to 1 day and 894.41–1788.81 mg COD/L*day, respectively, and increase as the HRT decreases from 6 to 4 days. The concentration of NH4+-N ranges from 278.67 to 369.46 mg/L, which is not in the range that disturbs the performance and stability of the hydrolytic acidogenic reactor. It was concluded that an HRT of 3 days and an ORL of 1788.81 mg COD/L*day were selected as optimal operating conditions for the high performance and stability of the two-phase anaerobic digestion of slaughterhouse wastewater in the hydrolytic–acidogenic reactor at a mesophilic temperature. The findings of this study can be applicable for other agro-process industry wastewater types with similar characteristics and biowaste for value addition and sustainable biowaste management and safe discharge.
Read full abstract