Abstract

BackgroundIncreasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions.ResultsThe TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas.ConclusionsThe proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.

Highlights

  • Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant

  • This study aims to demonstrate the practical application of a mathematical model developed by our team [27, 28], which after successful verification, can be used to optimize the operation of real systems and formulate recommendations of changes for the tested real installations

  • The modified and verified mathematical model of the anaerobic digestion (AD) process proved to be a valuable tool for the description and design of biogas plant technological installations, at least under the conditions in which it was tested

Read more

Summary

Introduction

Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. The raw feedstock, consisting of mainly carbohydrates, proteins, and lipids is hydrolyzed to simpler compounds: sugars, amino acids, and longchain fatty acids [3]. This process is driven by facultative anaerobes, mainly by extracellular enzymes [4]; the process is very nonspecific [5]. This has led to a commonly used approach, which is based on separating this step from the production chain. This can be made by performing a biological pre-treatment of the raw material before injecting it to the main reactor, or by performing the physicochemical conversion in a separate unit process [6,7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call