The geometrically nonlinear free vibration of functionally graded thick plates resting on the elastic Pasternak foundation is investigated. The motion equations are derived applying the Hamilton principle. We consider the first order shear deformation plate theory (FSDT), in which the modified shear correction factor is required. A 16-noded Mindlin plate element of the Lagrange family which is free from shear locking due to small thickness of the plate used. The material properties are assumed to be temperature-dependent and expressed as a nonlinear function of temperature. Because the FGM plates are not homogeneous, the basic equations are calculated in the equivalent physical neutral surface which differs from the geometric mid-plane. In the pre-buckling range natural frequencies decrease ultimately reaching zero for critical stress in the bifurcation point.