In this article, a theoretical study is carried out to seek an approach to remotely measure the thickness of the oil film. It is known that it is difficult to probe the oil thickness using a microwave radar due to the fact the dielectric constant of oil is very small compared with seawater for microwave frequencies. While in the range of terahertz (THz) electromagnetic (EM) wave frequency, the dielectric constants of oil and seawater are comparable, resulting in the THz EM fields scattered from the air–oil interface and those from the oil–water interface can produce constructive and destructive interference with the variation in the oil film thickness. Based on this principle, the sensitivity of the THz EM wave to the oil thickness is investigated in this work. First, the oil–seawater two-layer medium is equivalent to a single-layer medium by an equivalent dielectric constant model. Then, the THz EM scattering from the oil-covered sea surface is simulated using the first-order small slope approximation method (SSA-1) and the obtained equivalent dielectric constant. Meanwhile, the influences caused by the damping effect of the oil film, the reduction for friction velocity, and the change in equivalent permittivity on the normalized radar cross section (NRCS) are analyzed. The numerical results show that the NRCSs of THz frequencies are more sensitive to the change in oil thickness than that of microwave frequencies. This property makes the THz EM wave have the potential to probe the thickness of the oil film.
Read full abstract