Circadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines. We observed extensive natural variation in diel transcription patterns, with two-fold variation in the number of genes that oscillate over the course of the day. A convolutional neural network trained to predict oscillation from promoter sequence identified sequences previously reported as binding motifs for known circadian clock genes in other plant systems. Genes showing diel transcription patterns that cosegregate with promoter sequence haplotypes are enriched for associations with photoperiod sensitivity and may have been indirect targets of selection as maize was adapted to longer day lengths at higher latitudes. These findings support the idea that cis-regulatory sequence variation influences patterns of gene expression, which in turn can have effects on phenotypic plasticity and local adaptation.
Read full abstract