PurposeThe present study scrutinizes the relative performance of various near-wall treatments coupled with two-equation RANS models to explore the turbulence transport mechanism in terms of the kinetic energy budget in a plane wall jet and the significance of the near-wall molecular and turbulent shear, to select the best combination among the models which reveals wall jet characteristics most efficiently.Design/methodology/approachA two-dimensional steady incompressible plane wall jet in a quiescent surrounding is simulated using ANSYS-Fluent solver. Three near-wall treatments, namely the Standard Wall Function (SWF), Enhanced Wall Treatment (EWT) and Menter-Lechner (ML) treatment coupled with Realisable, RNG and Standard k-e models and also the Standard and Shear-Stress Transport (SST) k-ω models are employed for this investigation.FindingsThe ML treatment slightly overestimated the budget components on an outer scale, whereas the k-ω models strikingly underestimated them. In the buffer layer at the inner scale, the SWF highly over-predicts turbulent production and dissipation and k-ω models over-predict dissipation. Appreciably accurate inner and outer scale k-budgets are observed with the EWT schemes. With a sufficiently resolved near-wall mesh, the Realisable model with EWT exhibits the mean flow, turbulence characteristics and turbulence energy transport even better than the SST k-ω model.Originality/valueThree distinct near-wall strategies are chosen for comparative performance analysis, focusing not only on the mean flow and turbulence characteristics but the turbulence energy budget as well, for finding the best combination, having potential as a viable and low-cost alternative to LES and DNS for wall jet simulation in industrial application.
Read full abstract