Abstract

The heat transfer technology is growing significantly for desired solutions as the need for efficient heating and cooling systems in the aerospace, automotive, and chemical sectors. Bearing this in mind the need for effective cooling/heating systems, the steady, two-dimensional Glauert wall jet flow with thermophoretic particle deposition is investigated in the presence of Al2O3 nanoliquid. The Glauert transformations are used to transform the system of partial differential equations (PDEs) that reflect conservation, continuity, temperature, and concentration, as well as boundary conditions. The fourth fifth order Runge-Kutta-Fehlberg (RKF-45) method along with the shooting approach is used to solve the reduced system of ordinary differential equations (ODEs). The role of physical quantities for the parameters in concern are visually depicted and described in depth. Results reveal that, rise in values of velocity slip parameter upsurges the velocity profile away from the wall and declines near the surface. The increase in radiation parameter inclines the heat transfer. The growing values of both radiation parameter and volume fraction advances the heat transfer rate. The growing values of thermophoretic parameter improves the mass transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.