Due to its miniature size and single-pass nature, Unmanned Aerial Vehicle (UAV)-borne array synthetic aperture radar (SAR) is capable of obtaining three-dimensional (3D) electromagnetic scattering information with a low cost and high efficiency, making it widely applicable in various fields. However, the limited payload capacity of the UAV platform results in a limited number of array antennas and affects 3D resolution. This paper proposes a 3D imaging method for UAV-borne SAR based on nested difference co-arrays and azimuth multi-snapshots. We first designed an antenna arrangement based on nested arrays, generating a virtual antenna twice as long as the original one. Then, we used a difference co-array method for 3D imaging. The required multi-snapshot data were obtained through azimuth down-sampling, rather than traditional spatial averaging methods. Due to the slow flight of the UAV, this method could generate multiple SAR images without affecting the two-dimensional resolution. Based on simulations and real data verification, the proposed algorithm overcomes the problem of two-dimensional resolution decline caused by traditional spatial averaging methods and improves three-dimensional resolution ability, theoretically achieving half the Rayleigh resolution.
Read full abstract