Particle Swarm Optimization (PSO) is an evolutionary algorithm widely used in optimization problems. It is characterized by a fast convergence, which can lead the algorithm to stagnate in local optima. In the present paper, a new Multi-PSO algorithm for the design of two-dimensional infinite impulse response (IIR) filters is built. It is based on the standard PSO and uses a new initialization strategy. This strategy is relayed to two types of swarms: a principal and auxiliaries. To improve the performance of the algorithm, the search space is divided into several areas, which allows a best covering and leading to a better exploration in each zone separately. This solved the problem of fast convergence in standard PSO. The results obtained demonstrate the effectiveness of the Multi-PSO algorithm in the filter coefficients optimization.
Read full abstract