Abstract

This paper presents a lattice structure for the realization of two-dimensional (2-D) recursive digital allpass filters (DAFs) with general causality. We employ four basic lattice sections to realize 2-D recursive DAFs with wedge-shaped coefficient support region like a nonsymmetric half-plane (NSHP) support region. The theory and transfer functions of the realized 2-D lattice DAFs are derived. Some variations of the 2-D lattice structure are also presented. We use the Roesser state space model to verify the minimal realization of the proposed 2-D recursive lattice DAF. We present a least-squares design technique and a minimax design technique to solve the nonlinear optimization problems of the proposed 2-D lattice DAF structure. The novelty of the presented lattice structure is that it not only inherits the desirable attributes of 1-D Gray-Markel lattice allpass structure but also possesses the advantage of better performance over the existing 2-D lattice allpass structures. Finally, several design examples are provided for conducting illustration and comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.