Scalable production of reduced graphene oxide (rGO) films with high mechanical-electrical properties is desirable as these films are candidates for wearable electronics devices and energy storage applications. Removing structural incompleteness such as wrinkles or voids in the graphene films, which are generated from the assembly process, would greatly optimize their mechanical properties. However, the densely stacked graphene sheets in the films degrade their ionic kinetics and thus limit their development. Here, a horizontal-longitudinal-structure modulating strategy is demonstrated to produce enhanced mechanical, conductive, and capacitive graphene films. Typically, two-dimensional large graphene sheets (LGS) induce regular stacking of graphene oxide (GO) during the assembly process to reduce wrinkles, while one-dimensional single-walled carbon nanotubes (SWCNT) bridge with graphene sheets to strengthen the multidirectional intercalation and reduce GO layer restacking. The simultaneous incorporation of LGS and SWCNT synergistically creates a fine microstructure by improving the alignment of graphene sheets, increasing continuous conductive pathways to facilitate electron transport, and enlarging interlayer spacing to promote electrolyte ion diffusion. As a result, the obtained graphene films are flat and exhibit signally reinforced mechanical properties, electrical conductivity (38727 S m-1), as well as specific capacitance (232 F g-1) as supercapacitor electrodes compared to those of original rGO films. Moreover, owing to the comprehensive improved properties, a flexible gel supercapacitor assembled by the graphene film-based electrodes shows high energy density, good flexibility, and excellent cycling stability (93.8% capacitance retention after 10 000 cycles). This work provides a general strategy to manufacture robust graphene structural materials for energy storage applications in flexible and wearable electronics.