The reasonable and efficient prediction of dam failure events is of great significance to the emergency rescue operations and the reduction in dam failure losses. This work presents a model that is based on the physical mechanism. It is coupled with a multi-architecture (multi-CPU and GPU) open-source two-dimensional flood model, which is based on high-precision terrain and land use data. The aim is to enhance the accuracy of dam break flood process simulations. The model uses DEM data as a computational grid and updates it at each time step to reflect breach evolution. Simultaneously, the breach evolution model incorporates an analysis of stress on sediment particles, establishing the initial erosion state and lateral expansion model while accounting for seepage. The determination of the overflow of the breach is resolved through the application of a two-dimensional hydrodynamic model. This approach achieves a robust connection between the upstream reservoir, the dam structure, and the downstream inundation area. The coupled model is utilized to calculate the failure of earth-rock dams and landslide dams, and a sensitivity analysis is conducted. Taum Sauk Dam and Tangjiashan landslide dam were selected to represent earth dam break and barrier lake break, respectively, which are the main types of dam breaks. The obtained results demonstrate strong concurrence with the measured data, the relative errors of the four important parameters of the application case, the peak discharge of the breach, the top width of the final breach, the depth of the breach and the arrival time of the maximum peak discharge are all within ±10%. Although the relative error of the completion time of the final breach is greater than 10%, it is about 30% less than the relative error of the physical model.
Read full abstract