BackgroundsTo the best of our knowledge, there are no reports of proteomic analysis for the identification of unknown proteins involved in resistance to anaplastic lymphoma kinase (ALK) inhibitors. In this study, we investigated the proteins involved in resistance to alectinib, a representative ALK inhibitor, through proteomic analysis and the possibility of overcoming resistance. MethodsAn ALK-positive lung adenocarcinoma cell line (ABC-11) and the corresponding alectinib-resistant cell line (ABC-11/CHR2) were used. Two-dimensional difference gel electrophoresis (2D DIGE) was performed; the stained gel was scanned and the spots were analyzed using DeCyder TM2D 7.0. Mass spectrometry (MS) with the UltrafleXtreme matrix-assisted laser desorption ionization-tandem time-of-flight (MALDI-TOF/TOF) MS system was performed. For the MS/MS analysis, the samples were spotted on an AnchorChipTM 600 TF plate. The peptide masses obtained in the reflector positive mode were acquired at m/z of 400−6,000. MS/MS data were searched against the NCBI protein databases. Growth inhibition was measured using an MTT assay. The isobologram and combination index were calculated based on the median-effect analysis. Western blotting was performed using antibodies, including superoxide dismutase (SOD) 1, MET, ERK, PARP, AKT, and BRCA1. ResultsThe 2D DIGE for ABC-11 and ABC-11/CHR2 showed different expression levels in about 2,000 spots. SOD was identified from spots highly expressed in resistant strains. Western blotting also confirmed SOD1 overexpression in ABC-11/CHR2. siSOD1 enhanced the growth inhibitory effects of alectinib, increased cleaved PARP levels, and decreased pERK, pAKT, and BRCA1 levels with a combination of alectinib. In addition, the combination of LCS-1, an SOD1 inhibitor, and alectinib synergistically suppressed the growth in ABC-11/CHR2, but not in ABC-11. ConclusionsSOD1 overexpression is thought to be a mechanism for alectinib resistance, suggesting the possibility of overcoming resistance using SOD1 inhibitors.
Read full abstract