Abstract

Discovering novel changes in the proteome of malignant lung epithelial cells and/or the tumor-microenvironment is paramount for diagnostic, prognostic, and/or therapy development. A time-dependent 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumor model was used to screen the proteome of lung tumors. NNK-transformed human lung epithelial BEAS-2B cells were then established to evaluate the epithelial cell-specific protein changes. A duration-dependent increase of tumor burden was observed in NNK-treated mice, 2/12 (17%), 8/12 (67%), 9/12 (75%), and 10/10 (100%) at weeks 8, 12, 16, and 20 after the NNK exposure, respectively. A total of 25 differentially expressed proteins (≥ twofold change), predominantly structural, signaling, and metabolic proteins, were detected by two-dimensional difference gel electrophoresis and identified by mass spectrometry. Calregulin, ezrin, histamine releasing factor (HRF), and inorganic pyrophosphatase 1 (PPA1) exhibited changes and were further confirmed via immunoblotting. In addition, immunohistochemistry (IHC) analysis indicated upregulated E-cadherin and decreased vimentin expression in epithelial cells of tumor tissues. Acquisition of a neoplastic phenotype in NNK-transformed BEAS-2B cells was demonstrated by enhanced wound closure and increased anchorage independent colony formation. In transformed BEAS-2B cells, protein expression of E-cadherin, ezrin, and PPA1 (but not calregulin and HRF) was upregulated, as was observed in tumor tissues IHC staining using mouse lung tumor tissues further revealed that HRF upregulation was not lung epithelial cell specific. Altogether, tumorigenesis after NNK exposure may be initiated by protein dysregulation in lung epithelial cells together with proteome derangement derived from other cell types existing in the tumor-microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call