2차원 저장소 적재는 NP-hard 문제로서 그 문제의 정확한 해를 구하는 것이 어려운 것으로 알려져 있으며, 이의 더 좋은 해를 얻기 위해 유전자(genetic) 알고리즘, 시뮬레이티드 어닐링(simulated annealing), 타부서치(tabu search)등과 같은 근사적 접근법이 제안되어 왔다. 하지만 분지한계(branch-and-bound)나 타부서치 기법들을 이용한 기존의 대표적인 근사 알고리즘들은 휴리스틱 알고리즘의 해에 기반을 둠으로 효율성이 낮고 반복수행에 의한 계산시간이 길다. 따라서 본 논문에서는 이러한 근사 알고리즘의 복잡성을 간소화하고, 알고리즘의 효율성을 높이기 위해 적재가능성을 판단하는 적합성 함수(fitness function)를 정의하고 이를 이용하여 어떤 특정 개체의 적재영역을 판단하는데 영향을 주는 적재영역의 수를 계산한다. 또한, 이들을 이용한 새로운 휴리스틱 알고리즘을 제안하였다. 끝으로 기존의 휴리스틱 또는 메타휴리스틱 기법과의 비교실험을 통해 기존의 휴리스틱 알고리즘인 FFF와 FBS에 비해 97%의 결과가 같거나 우수하였으며, 타부서치 알고리즘에 비해 86%의 결과가 같거나 우수한 것으로 나타났다. The two-dimensional bin packing problem(2D-BPP) has been known to be NP-hard, and it is difficult to solve the problem exactly. Many approximation methods, such as genetic algorithm, simulated annealing and tabu search etc, have been also proposed to gain better solutions. However, the existing approximation algorithms, such as branch-and-bound and tabu search, have shown the low efficiency and the long execution time due to a large of iterations. To solve these problems, we first define the fitness function to simplify and increase the utility of algorithm. The function decides whether an item is packed into a given area, and as an important information for a packing strategy, the number of subarea that can accommodate a given item is obtained from the variant of the fitness function. Then we present a heuristic algorithm BF for 2D bin packing, constructed by the fitness function and subarea. Finally, the effectiveness of the proposed algorithm will be expressed by the comparison experiments with the heuristic and the metaheuristic of the literatures. As comparing with existing heuristic algorithms and metaheuristic algorithms, it has been found that the packing rate of algorithm BP is the same as 97% as existing heuristic algorithms, FFF and FBS, or better than them. Also, it has been shown the same as 86% as tabu search algorithm or better.
Read full abstract